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1. Introduction

The problem:

(1) Given: — a graph G = (V,E),
~ pairs ry,Si,...,r, S of vertices of G;
find: — pairwise disjoint paths Py,...,P; in G, where
P; connects r; and s (for i=1,...,k),

is NP-complete, even for planar graphs, both in the vertex-disjoint and in the edge-
disjoint case (Lynch [26]). In some special cases, however, there is a polynomial-
time method for (1). These cases usually also give rise to a theorem characterizing
the existence of a solution as required.

Moreover, if G is planar, one can design a heuristic or enumerative approach
based on the topology of the plane. It amounts to selecting a, possibly small,
set of faces I,...,I, of G so that each of the vertices ry,sy,..., 7%, Sk is incident
with at least one of these faces. Next we choose (or enumerate) for each pair
1, a curve C; in R*\(I; U...U I,) connecting r; and s;. Our problem then is to
find pairwise disjoint paths P;,..., P, so that P; is homotopic to C; in the space
RA\(I;U...u Ip). If such P; are found, we have solved our original problem.
Otherwise, we choose other curves C; (i.e., representing other homotopies), and
try again.

So in this approach (proposed by Pinter [31]) we must solve the following
problem:

(2) Given: — a planar graph G = (V,E), embedded in R2,
— faces Iy,...,1p,
— curves Cy,...,C, with end points on the boundary of
Lu...Ul,
find: — pairwise disjoint simple paths Pj,...,P; in G where
P; is homotopic to C; in R*\(;U...UI,), for
i=1,...,k

This problem also emerges from Robertson and Seymour’s work on graph minors
[34]. It turns out that this problem can be solved in polynomial time in the vertex-
disjoint case. The edge-disjoint case appears to be more difficult (due to the fact
that the curves Ci,...,C; then can be quite wild). In fact, Kaufmann and Maley
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[17] recently showed that the edge-disjoint version is NP-complete. In some
special cases, a polynomial-time algorithm for the edge-disjoint case has been
found.

In this paper we give a survey of the results and methods for problems (1)
and (2). We moreover describe some links with problems on disjoint circuits in
graphs on compact surfaces, and on disjoint trees of given homotopies.

Some Conventions and Terminology

By an embedding of a graph G = (V,E) in the plane or any other surface, we
mean an embedding without intersecting edges. When speaking of a planar graph,
we implicitly assume it to be embedded in the plane. We identify an embedded
graph with its topological image. Edges are considered as open curves, and faces
as open regions. By bd (..) we denote the boundary of ... . An r —s—path is a
path from r to s.

2. Vertex-Disjoint Paths and Trees

As mentioned, the problem:

(3) Given: — a graph G = (V,E),
— pairs ry,s1,...,7, 8¢ of vertices of G,
find: — pairwise vertex-disjoint paths Py,...,P, in G, where
P; connects r; and s; (for i=1,...,k),

is NP-complete (Lynch [26]). On the other hand, Robertson and Seymour [35]
showed:

Theorem 1. For each fixed k, there is a polynomial-time algorithm for (3).

In fact, the algorithm has running time O(|V'|*|E|), but the constant depends
heavily on k. For details, see also Robertson and Seymour [36].

For the special case of planar graphs, there are some further polynomial-time
methods. Clearly, a necessary condition for planar G is:

(4) (Cut condition) for each closed curve D in IR?, the number of intersections
with G is at least the number of pairs r;, s; separated by D.

Here D separates r;,s; if each curve connecting r; and s; intersects D. Obviously,
in (4) we may restrict D to closed curves intersecting G only in vertices of G, and
not in edges.

Robertson and Seymour [33] observed that there is an easy algorithm for (3)
in the case where G is planar, and ry,sy,...,rg, 5 all lie on the boundary of one
face I. In that case a necessary condition is:

(5) (Cross-freedom condition) no two pairs r;,s; and r;,s; are crossing.

Here r;,s; and rj,s; are said to cross if r;,s;,rj,s; are all distinct and 7;,7},5:5;
occur cyclically (clockwise or anti-clockwise) around the boundary of I:
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eorem 2. If G is planar and ry,si,...,rk, sk all are on the boundary of one face
problem (3) is solvable in polynomial time.

oof. Without loss of generality, r; % s; for all i. We first check if r,51,..., "k Sk
> all distinct and if the cross-freedom condition holds. The cross-freedom
ndition implies that there exists a pair r;,s; so that at least one of the two r; —s-
ths along the boundary of I does not contain any r; or s;(j # i). Withc
is of generality, i = 1. Let Qy be this path. Now if (3) has a solution, ther

e with Py = Q; (as in any solution of (3), path P; can be “pushed” aga

> boundary of I). Leaving out the vertices in Q; from G, together with
ges incident to them, we obtain a graph G’. We next solve problem (3) .
\72,82,...,Tk, Sk. If we find paths P,,..., Py then Py, P,,..., P, form a solution t
> original problem. Otherwise, (3) has no solution. m|

fact this algorithm also easily implies the following theorem:

ieorem 3. Let G be planar, so that ry,sy,...,r, Sk are all on the boundary of one
‘e. Then (3) has a solution if and only if the cut condition and the cross-freedom
ndition holds.

In fact, the following generalization of Theorem 2 follows from the homotopic
proach to be described in Section 5 below (see Theorem 34):

eorem 4. For each fixed p there exists a polynomial-time algorithm for problem
, Whenever G is planar so that rq,sy,...,rw, sk can be covered by the boundaries
at most p faces.

We conjecture that also the following holds:

mjecture. Problem (3) is solvable in polynomial time whenever the graph
= WV,EU{{ri,s1},...,{rc,s¢}}) is planar.

here the pairs {ry,s1},...,{r, sk} are now edges in H, which edges we may
sume to form a matching in H.

‘tension to Disjoint Trees

iere is a direct extension of the above results to trees instead of paths. Consider
: problem:
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(7) Given: — a graph G = (V, E),
— subsets Wy,...,W; of V,
find: — pairwise vertex-disjoint trees T,...,Tx where T;
covers W; (for i=1,...,k).

Again this problem is NP-complete (as it generalizes (3)). For planar graphs we
can proceed similarly to above. Again a necessary condition is:

(8) (Cut condition) for each closed curve D in IR?, the number of intersections
with G is at least the number of W; separated by D.

Here D separates W; if D separates at least two points in W,
If all points in W; U... U W, are on the boundary of one face I, there is the
following necessary condition:

() (Cross-freedom condition) no two sets W; and W; are crossing.

Here W; and W; are said to cross if W; contains two points r',s' and W; contains
two points r”,s” so that the pairs #/,s and r”,s” cross.

Now the following two theorems extend Theorems 2 and 3:

Theorem 5. If G is planar, and all vertices in Wy U...U Wy are on the boundary
of one face 1, then problem (7) can be solved in polynomial time.

Theorem 6. Let G be planar, so that all points in W, U...UW, are on the boundary
of one face. Then problem (7) has a solution if and only if the cut condition and
the cross-freedom condition hold.

Again, the following generalization of Theorem 5 follows from the homotopic
approach to be described in Section 5 below:

Theorem 7. For each fixed p there exists a polynomial-time algorithm for problem
(7), whenever G is planar so that the vertices in Wy U...U W, can be covered by
the boundaries of at most p faces.

The conjecture above can be extended as follows. Let uy,...,u; be new
(abstract) vertices. Let F be the set of all pairs {u; w} where i € {1,...,k} and
w € W;. We conjecture:

Conjecture. Problem (7) is solvable in polynomial time whenever the graph
H :=(VU{u,...,u},E UF) is planar.

3. Edge-Disjoint Paths and Multicommodity Flows

We now turn to the edge-disjoint case. Consider the problem:
(10) Given — agraph G = (V,E),
— pairs ry,sy,...,r, S of vertices of G,
find: — pairwise edge-disjoint paths Py,...,P, in G where
P; connects r; and 5 (for i=1,...,k).
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It is not difficult to see that Robertson and Seymour’s theorem (Theorem 1 above)
implies:

Theorem 8. For each fixed k, there exists a polynomial-time algorithm for problem
(10).

This follows by considering the line-graph of G. In general however, prob-
lem (10) is NP-complete, even for planar G.
Again, a necessary condition for (10) is:

(11) (Cut condition) for each X = V : |6(X)| = |p(X)].

n n

(12)

52 8

Here 4(X) denotes the set of edges with exactly one end point in X. By p(X)
we denote the set of those i € {1,...,k} for which exactly one of r; and s; belongs
to X.

As is well-known, Menger’s theorem [27] states that the cut condition is also
sufficient if ry = ... = r and s; = ... = s;. We leave it as an exercise to derive
from this that the cut condition is sufficient if we require only r; = ... = ry.

However, in the general case it is not a sufficient condition, as is shown by
the simple example of (12) above.

So one may not hope for many more interesting cases where the cut condition
suffices.

It turns out however that one more condition (which is clearly not a necessary
condition) is quite powerful:

(13) (Parity condition) for each vertex v of G, the number

B({vhI + lp({v})]

is even.

In particular, every vertex not in {ry,si,...,r Sk} should have even degree. This
is why cases satisfying (13) sometimes are called eulerian.

The following is a theorem of Lomonosov [22, 23, 24] (extending earlier
results of Hu [11], Rothschild and Whinston [37, 38], Dinits [1], Papernov [30]
and Seymour [53] (cf. Lovasz [25], Seymour [52])):
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Theorem 9. The cut condition implies that problem (10) has a solution, in case the
parity condition holds and {ry,s1},...,{r,sx} do not contain four pairs forming one
of the following configurations:

(14) —

>
(@) (b)

For a proof, see also Frank [6].

It is not difficult to see that excluding (14)(a) and (b) is equivalent to the con-
dition that the graph on {ry,si,...,r s} with edges {ry,s1},..., {rk, sk} (possibly
parallel) is

(15) either (i) the complete graph K4 (possibly with parallel edges), or (ii) the
circuit Cs (possibly with parallel edges), or (iii) the union of two stars
(possibly with parallel edges), or (iv) a graph consisting of three disjoint
edges.

The following examples show that the condition in Theorem 9 is in a sense tight:

n rn S
(16) n hd 5
S n
51
n 3 84 $H Sy Iy

Theorem 9 has the following implication for multicommodity flows. For
any “demand” function d : {1,...,k} — @, and any “capacity” function
¢ 1 E—> Qy, let a multicommodity flow be a system of paths Pyy,..., Py, Pay,-..,
Payy.. s Pia,..., Py, together with a system of rationals Ayy,...,41,421,-..,
A2tyseeos Aty Air, = 0 satisfying:

17) @) Zl/lij=di i=1,...,k),
Jj=1
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EDIPI I LICERT (e € E).

i=1 j=1

Here Z7 (e) denotes the number of times P passes e.

If the 4;; are integral, we say that the multicommodity flow is integral. If the
A;j are half-integral, we say that the multicommodity is half-integral. If d; = 1 for
all i and c(e) = 1 for all e, we call a multicommodity flow a Jfractional solution
to problem (10). Indeed, an integral multicommodity flow then corresponds to a
solution to (10).

Again we have a cut condition necessary for the existence of a multicommodity
flow (given a demand function d and a capacity function ¢):

(18) (Cut condition) for each X = V : 3 5y, cle) = Licpx) dic
Note that there are the following implications:

(19) 3 integral multicommodity flow ==
3 half-integral multicommodity flow ==
3 multicommodity flow ==
cut condition.

Now Theorem 9 implies that in some cases we can reverse the implications, as
was shown by Papernov [30] (forming an extension of Ford and Fulkerson’s
max-flow min-cut theorem [5]). Consider the property

(20) {ri,s1}---,{re. sk} do not contain one of the following configurations:

Theorem 10. If d and c are integral-valued, and condition (20) is satisfied, then the
cut condition (18) is equivalent to the existence of a half-integral multicommodity

JSlow.

This can be derived from Theorem 9 by replacing each edge e of G by 2c(e)
parallel edges, and each pair {r;,s;} by 2d; “parallel” pairs.

Theorem 11. If (20) is satisfied, then the cut condition is equivalent to the existence
of a multicommodity flow.
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This can be seen by multiplying d and ¢ by some natural number K so that
Kd and Kc are integral, and next by applying Theorem 10.

This theorem is tight in the sense that if (20) is not satisfied, there exists
a graph G, a demand function d and a capacity function ¢ for which the cut
condition is satisfied, but no multicommodity flow as required exists - this can
be derived directly from the examples (16).

Ifd =1 and ¢ = 1, Theorem 10 reduces to:

Theorem 12. If (20) is satisfied, then the cut condition (11) is equivalent to the
existence of a half-integral solution to problem (10).

Karzanov [16] gave an extension of part of this result. Consider the property:

(1) {ri,s1}s---»{re s} do not contain one of the following configurations:

—— or
It can be checked easily that this means that the graph on {ry,si,...,r, s}
with edges {ri,s1},..., {re. s} is:

(22) either (i) the complete graph Ks (possibly with parallel edges), or (ii) the
union of a triangle and a star (possibly with parallel edges), or (iii) the
union of two stars (possibly with parallel edges), or (iv) the graph consisting
of three disjoint edges.

Karzanov showed:

Theorem 13. If (21) holds and the parity condition holds, then the existence of a
fractional solution to (10) implies the existence of a solution to (10).

Again this implies:

Theorem 14. If (21) holds, then (10) has a half-integral solution if and only if (10)
has a fractional solution.

Example (23) shows that it is necessary to exclude the second configuration
in (21).

In this example a fractional solution exists, but no integral solution. It is
not known to me if also the first configuration in (21) must be excluded. In
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[24], Lomonosov gives an example showing that it is necessary to require that
{r1,51},---,{rk, sp} do not contain 38 pairs, covering 6 points, so that they fall
apart in three sets of parallel edges, of sizes 2, 18 and 18, respectively.

n s 51 N S n

(23)

Iy Sg S4 15 S5 Iy

Duality

Some of the results above have a “dual” counterpart, in terms of packing of cuts
as was noticed by Karzanov [14] and Seymour [51]. Consider the convex cone
K in R* xRE consisting of all vectors (d;¢) for which (17) has a solution Aij 2 0.
So K is the convex cone generated by all vectors

(24 () :;2") (i=1,...,k;P isan r;—s; path),
(ii) (0;e.) (e € E).

Here ¢; denotes the i-th unit basis vector in R, and ¢, denotes the e-th unit
basis vector in RE. By y” we denote the function in RF given by x(e) := the
number of times P passes e.

Now the content of Theorem 11 is that, if (20) is satisfied, then K is exactly
the cone of all vectors which have nonnegative inner product with all vectors:

(25) () (—2*X;2°%) (X<,
(li) (81;0) (l = 1""ak)3
(ii1) (0;e.) (e € E).

Here 2°® and 2°¥ denote the incidence vectors of p(X) and §(X), respec-
tively.

Now by duality (Farkas’ lemma), the convex cone generated by the vectors
(25) is exactly equal to the set of vectors having nonnegative inner product with
all vectors (24) (if (20) is satisfied). In fact, it is equivalent to the following:

Theorem 15. Let (20) be satisfied. Then there exist cuts 6(X)),...,6(X;) and ratio-
nals py,...,u > 0 so that:
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(26) () distgr,s) = » (4 |i€p(X;)) (foreach i=1,...,k),

t
@) Y wx% e <1 (for each e € E).
j=1

Here distg(r,s) denotes the distance between r and s in G. To derive Theo-
rem 15 note that the vector

(27) (—distg(r1,81),.-.,—distg(re, sk); 1., 1)

has nonnegative inner product with all vectors in (24). Hence it can be written
as a nonnegative linear combination of vectors in (25), yielding cuts 4(X;) and
rationals y; as required.

Now Karzanov [15] showed that if G is bipartite, we can take the p; integral.
That means:

Theorem 16. Let G be bipartite, and ry,s1,...,7k, Sk be vertices of G so that (20)
is satisfied. Then there exist pairwise disjoint cuts 6(X1),...,8(X;) so that for each
i=1,....,k:

(28) distg(r;, s;)) = the number of cuts 6(X;) separating r; and s;.

Here 6(X) is said to separate r and s if X contains exactly one of r and s.
Theorem 16 extends theorems of Hu [12] and Seymour [50] for the case k = 2.
Theorem 16 implies:

Theorem 17. The y; in Theorem 15 can be taken from {3,1}.

This follows by replacing each edge of G by two edges in series, thus making a
bipartite graph.
For a short proof of some of the results in this section, see [47].

4. Edge-Disjoint Paths in Planar Graphs

Although the forbidden configurations given in Section 3 are “tight”, there are
more cases where the cut condition suffices, if we restrict G to planar graphs.
Again, we consider problem (10). So we have a graph G = (V,E) and pairs
T1,S1,-.., Tk Sk Of vertices, and we ask for pairwise edge-disjoint paths Pi,..., P,
where P; connects r; and s; (i = 1,...,k).

A basic result due to Okamura and Seymour [29] requires the following
property for planar G :

(29) G has a face I so that ry, sy, ..., 7, s all belong to the boundary of 1.

Theorem 18. Let G be planar so that (29) is satisfied. Moreover, let the parity
condition (13) hold. Then (10) has a solution if and only if the cut condition holds.
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For a proof we refer to Frank [6].
In fact, Okamura [28] showed that condition (29) can be weakened to:

(30) G has faces I}, I so that foreachi=1,....k : r,5; € bd(I,) or ri,s; € bd(15).

Theorem 19. Let G be planar so that (30) is satisfied. Moreover, let the parity
condition (13) hold. Then (10) has a solution if and only if the cut condition holds.

Also a proof of this theorem is given in Frank [6].
One may not allow in Okamura’s theorem “mixed pairs”, i.e. pairs r;,s; with

r; € bd(I1) and s; € bd(I;). Neither can one extend the theorem to more than two
faces. These facts are shown by the following example:

n S

(31) r - 84

S n

S n

In fact, in this example not even a fractional solution exists. The following
example (Hurkens, Schrijver and Tardos [13]), with mixed pairs, satisfying the
parity condition, has a fractional solution, but no integral solution:

nirs ni
SS SG
ry n
(32) 1 {
S3 84
I3 r
Sy Sg 5 5

In [46] we showed that in a particular case of mixed pairs the cut condition
suffices. Let I; and I, be two faces of G, where I; is (without loss of generality)
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the unbounded face. Let ry,s1,.. ., Sk be vertices so that:

(33) ri,...,rx are on bd (I;) in clockwise order,
S1,...,5¢ are on bd (I;) in anti- clockwise order.

Theorem 20. Let G be planar so that (33) is satisfied. Moreover, let the parity
condition (13) hold. Then (10) has a solution if and only if the cut condition holds.

Example (31) also shows that we cannot allow ry,...,r¢ and sy,..., s, to occur
both in clockwise order on bd(I;) and bd(I,), respectively.
Seymour [54] considered the following property:

(34) the graph (V,E U {{r1,s1},-..,{r, sx}}) is planar.

Theorem 21. Let (34) and the parity condition (13) be satisfied. Then (10) has a
solution if and only if the cut condition is satisfied.

Again, for a proof see Frank [6].
In fact, the proofs of Theorems 18, 19, 20 and 21 all yield polynomial-time algo-
rithms for finding the required paths. These theorems also imply the following:

Theorem 22. Let G be planar, and let (30), (33) or (34) be satisfied. Then problem
(10) has a half-integral solution if and only if the cut condition is satisfied.

More generally,

Theorem 23. Let G be planar, and let (30), (33) or (34) be satisfied. Let d € Z’i
and ¢ € ZE. Then there exists a half-integral multicommodity flow if and only if
the cut condition (18) is satisfied.

Duality

Similar to the cut packing results in Section 3 dual to Theorem 9, there are
theorems dual to Theorems 18, 19, 20 and 21.

The following result (Hurkens, Schrijver and Tardos {13]) is dual to the
Okamura-Seymour theorem (Theorem 18):

Theorem 24. Let G be a planar bipartite graph. Then there exist pairwise disjoint
cuts §(X,),...,0(X;) so that for each pair of vertices u,v on the outer boundary:

(35) distg(u,v) = number of cuts 6(X;) separating u, v.

In fact, this can be derived from the Okamura-Seymour theorem, as we will show
now. Let

(36) (vo,e1,01,. .., Vk—1, €k, Vk)

be the vertices and edges on the outer boundary of G, where v, = vy. Define for
each pair e;,¢; :
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(37) rlese)) = 3(distGvi—1,v;_1) + distg (v;, v;) — distg(vi1, v;) — diste(vi, vj_1))-

It is not difficult to see that this number is 0 or 1 (as G is bipartite and planar).
Let Q be the set of pairs {e;, e;} with r(e;,e;) = 1. Now for each v, v, one has:

(38) distg(vg, v) = number of pairs {e;, e;} € Q crossing {v,, v ).

Here {ei,e;} crosses {.vg,vh} if v, and v, belong to different components of the
circuit (36) after deleting e; and e;. Equality (38) follows from (assuming without
loss of generality 0 =g < h <k) :

(39) numhber 2f pairs {e,e;} € Q crossing {vg, v} = Y1, Zj;h aree) =
% Yint Zj=h+1(di5t0(vi—-1’ vj—1) + dist (v, vj) — dist(vi—y, v;) — distg (vi, vj—1))
= dist(vo, vn)

(by cancellation).

Now we can apply the Okamura-Seymour theorem to a slight modification of
the dual graph of G, so that (38) implies that for each {e;,e;} € Q there exists a
cut 6(Xj;) containing e; and e, in such a way that the §(X;;) are pairwise disjoint.
By (38) again, these cuts have the required property (35).

In [49] it is shown that the more general dual to Okamura’s theorem (Theo-
rem 19) also holds:

Theorem 25. Let G be a planar bipartite graph, and let I and I, be two of its
faces. Then there exist pairwise disjoint cuts 6(Xy),-..,0(X;) so that (35) holds for
each pair of vertices u,v with u,v € bd(Iy) or u,v € bd ().

We do not see a direct way of deriving this from Okamura’s theorem. Similar
results hold for the duals of Theorem 19 and 20:

Theorem 26. Let G be a planar bipartite graph, and let ry,sy,...,rx, 5k be pairs
of vertices so that (33) or (34) is satisfied. Then there exist pairwise disjoint cuts
6(X1),...,0(X;) so that for eachi=1,... .k :

(40) distg(ri,s;) = number of cuts 6(X;) separating r; and s;.

With respect to (33) this follows from the results in [46]. For (34), this follows
from the “sums of circuits” theorem of Seymour [51], as was communicated to
me by AV. Karzanov: Let H = (W,F) be a planar graph, and let g : F — Z,
be so that Y., g(e) is even for each vertex v; Seymour’s theorem says that g is
a nonnegative integral combination of incidence vectors of circuits in H, if and
only if

@1) g(€) <3 .ep\e 80

for each cut D and each ¢ € D. Theorem 26 is derived by zpplying Seymour’s
theorem to the graph H dual to (V,E U {{r;,s1},.. ., {re. se}}), with g(e) := 1 for
edge e of H dual to an edge in E, and g(e) := distg(ri, s:) for edge e of H dual
to {ri,S,'}(i = 1,. .. ,k)
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The Projective Plane and the Klein Bottle

Some of the results have an analogue in terms of compact surfaces. First consider
the projective plane S. It arises from the disk

a

(42)

by identifying opposite points. There are two types of simple closed curves on S :
the homotopically trivial closed curves, and the homotopically nontrivial closed
curves (which form one homotopy class).

The homotopically trivial closed curves are those closed curves C whose
removal disconnects S. The homotopically nontrivial closed curves are not dis-
connecting.

The homotopically trivial closed curves are also those closed curves C which
are orientation-preserving, ie., after one turn of C the meaning of “left” and
“right” is not changed. The homotopically nontrivial closed curves are those
closed curves C which are orientation-reversing, ie., after one turn of C the
meaning of “left” and “right” is exchanged.

Now Lins [21] proved:

Theorem 27. Let G = (V,E) be an eulerian graph embedded on the projective plane
S. Then the maximum number of pairwise edge-disjoint homotopically nontrivial
circuits in G is equal to the minimum number of edges intersecting all homotopically
nontrivial circuits.

This theorem can be derived from the Okamura-Seymour theorem (Theorem
18) as follows. Let F < E be a minimum set of edges intersecting all homo-
topically nontrivial circuits in G. It is not difficult to see that there exists a
homotopically nontrivial simple closed curve D in S so that F is the set of edges
intersected by D. Removing D from S gives a disk, on which G’ := (V,E\F)
is embedded. Let {ry,s;},..., {re, sk} be the collection of pairs of end points of
the edges in F (so k = |F|). The fact that F has minimum size implies that
the cut condition (11) is satisfied with respect to G',ry,sy,..., 7k, sk. Hence by the
Okamura-Seymour theorem there exist pairwise edge-disjoint paths P;,..., Py in
G' connecting ry,sy;... ;rk, Sk, respectively. Extending these paths with the edges
in F gives a set of k circuits as required.
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In fact, by a construction of Lins [21], one can derive conversely the Okamura-
Seymour theorem from Lins’ theorem (Theorem 27). Indeed, in the Okamura-
Seymour theorem one may assume without loss of generality that all pairs r;, s;
and rj,s; are crossing (with respect to the unbounded face). If they are not,
there are two pairs r;,s; and r;,s; so that (may be after interchanging r; and s;)
risTj,Sj, i are in this order on the boundary of the unbounded face (clockwise,

say), and so that the path Q from r; to r; along this boundary (clockwise) does
not contain any other vertices from ry,sy,...,r, Sk :

(43)

Now extend G, in the unbounded face, as follows:

(44)

Replace r; by r{ and r; by r}. It is not difficult to see that both the conditions
and the conclusion of the Okamura- Seymour theorem are invariant under this
modification.

After a finite number of such modifications we obtain a situation where
¥1,51,...,Tk, S, are pairwise crossing. After that we can embed the graph (V,E U
{{ri,s1},--.,{re, sk}}) in the projective plane, in such a way that a circuit is
orientation-reversing if and only if it contains an odd number of edges from
{ri,s1},..., {r,s}. If the cut condition (11) is satisfied, the minimum size of an
edge set intersecting all orientation-reversing circuits is k. Hence by Lins’ theorem,
there exist k pairwise edge-disjoint orientation-reversing circuits, each of which
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cannot contain more than one edge from {ry,s;},..., {rw. sx}. Hence each contains
exactly one such edge. It gives in the original graph G paths as required.
By passing over to the surface dual, Theorem 27 gives:

Theorem 28. Let G = (V,E) be a bipartite graph embedded on the projective
plane S. Then the minimum length of an orientation-reversing circuit is equal to the
maximum number of pairwise disjoint edge sets, each intersecting all orientation-
reversing circuits.

Theorems 27 and 28 on the projective plane, parallel to the Okamura-Seymour
theorem, can be extended as follows to the Klein bottle, extending Okamura’s
theorem (Theorem 19) and Theorem 20.

Note that the Klein bottle can be constructed from the cylinder in two
possible ways. First, we can identify opposite points on one boundary, and
similarly identify opposite points on the other boundary:

(43)

a

A second representation also comes from the cylinder. Now we identify one

boundary in clockwise orientation with the other boundary in anti-clockwise
orientation:

(46) o

This is the usual representation of the Klein bottle.
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Now in [46] we showed:

Theorem 29. Let G be an eulerian graph embedded on the Klein bottle. Then
the maximum number of pairwise edge-disjoint orientation-reversing circuits in G is
equal to the minimum number of edges intersecting all orientation-reversing circuits.

This can be derived from Theorems 19 and 20, in a similar way as Lins’
theorem is derived from Theorem 18. In fact Theorems 19 and 20 correspond to
the two representations of the Klein bottle described above. It is not difficult to
see (by adding a “cross-cap”) that Theorem 29 implies Lins’ theorem.

Similarly, from Theorem 25 one can derive an extension of Theorem 28:

Theorem 30. Let G be a bipartite graph embedded on the Klein bottle. Then the
minimum length of an orientation-reversing circuit in G is equal to the maximum
number of pairwise disjoint edge sets, each intersecting all orientation-reversing
circuits.

5. Vertex-Disjoint Homotopic Paths and Trees

The problem:

(47) Given: — a planar graph G = (V,E),
— pairs ry,S,-.-,r, Sk Of vertices,
find: — pairwise vertex-disjoint paths Pj,...,P; in G,
where P; connects r; and s; (for i=1,...,k),

is NP-complete. So in order to solve this problem, one seemingly is bound to
nonpolynomial or suboptimal methods, like enumeration and heuristics.

Pinter [31] proposed to make use of the topology of the plane, and to classify
the possible solutions after their homotopy with respect to certain “holes” in the
plane.

That is, select a number of faces Iy,...,I, (including the unbounded face),
such that ry, sy,..., 7, sk all are on the boundary of I; U...UI,. Two curves C,C’ :
[0,1] — R2\(I; U...U I,) are called homotopic (in the space R:\(I; U...U I,))
if there exists a continuous function @ : [0, 1] x [0,1] — R*\(; U... U I,) such
that

(48) P(x,0) = C(x), P(x, 1) = C'(x),
@(0,x) = C(0), #(1,x) = C(1)

for all x € [0, 1]. Note that this implies that C(0) = C’(0) and C(1) = C'(1).

So C and C’ are homotopic if C can be shifted continuously over R\, U
...Ul,) to C’, without changing the beginning point or the end point of the curve.

Homotopy determines an equivalence relation between curves. Curves C,C’
beeing homotopic is denoted by C ~ C'.

Since each path in G can be considered as a curve in R\ U...U 1), it
also belongs to some homotopy class. So one approach to solve problem (48) is
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first to choose for each pair r;, s; a homotopy class of curves connecting r; and s;
(represented by one curve C;), and next to find paths Py,..., Py so that P; ~ C;
(fori=1,...,k).

This approach can be done in an enumerative way, by enumerating all possible
choices of homotopy classes (there are some direct ways of ensuring finiteness of
this enumeration, by excluding trivially infeasible choices), or alternatively in a
heuristic way, by guessing a choice of homotopy classes, and locally improving it
in case it turns out infeasible.

This approach asks for solving the following problem:

(49) Given: a planar graph G = (V,E), embedded in R?,
— faces I,...,I, of G (including the unbounded face),
— curves Cy,...,Cy with end points on bd(I; U...UI,),
find: — pairwise vertex-disjoint simple paths Py,..., P, where
P, is homotopic to C; in R*\(I;U...U I) (for
i=1,..,k).
The following was shown in [7]:

Theorem 31. Problem (49) is solvable in polynomial time.

The proof in [7] used the ellipsoid method. Below we shall give a sketch
of the method based on [42]. In [48] we give an algorithm with running time
0(|V]2 - log? |V|). Earlier, a polynomial-time algorithm for (49) was given by
Leiserson and Maley [20] in case G is a “grid” graph - an important case for
VLSI-design. Moreover, Robertson and Seymour [33] gave a polynomial-time
algorithm for (49) if p = 1 (which is Theorem 2) and if p = 2.

In fact, in [44] we gave an polynomial-time algorithm for a problem more
general than (49), viz. where one wants to connect sets of points by trees instead
of paths - see below.

Sketch of the Algorithm for (49)
We give a sketch of the algorithm of [42] for problem (49), leaving out many
details. It consists of four basic steps:

(50) I Uncrossing Cy,...,Cs,
II.  Determining the system Ax < b,
III.  Solving the system Ax < b in integers,
IV. Shifting the curves.

I. Uncrossing Cy,...,Ci

We first “uncross” Cy,...,Cy so as to make them simple and pairwise disjoint.
That is, if C; and C; have a crossing x, they should have a second crossing y so
that the parts of C; and C; in between of x and y are homotopic:
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(51)

So roughly speaking, none of the faces Iy,...,I, is contained in the region
enclosed. If C; and C; have a crossing x, and they would not have a second
crossing y with this property, then problem (49) has no solution.

Now replace (51) by:

[4]

(52)

Now the new C; and C; are homotopic to the original C; and C ;. In a similar
way we can uncross self-crossings of any C;. Repeating this we will end up with

(53) curves Cy,...,Cx in R?\(I; U...UI,) being simple and pairwise disjoint, so
that C; ~ C; fori=1,...,k

(or curves with this property do not exist at all, in which case (49) trivially has
no solution). Without loss of generality, C; = C; for all i.

II. Determining the System Ax < b

We next determine a system Ax < b of linear inequalities (where A is a matrix
and b is a column vector).

First “blow up” the graph G slightly. That is, each vertex v of G becomes a
disk D,, and each edge e becomes a “channel”:

(54) /\

becomes

N\
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Let H be the blown-up “graph”. Each face F of G corresponds naturally to
a “face” F' of H. We may assume (by shifting slightly), that I = I,...,I, = I,

We can “push” the C; so that they are simple and pairwise disjoint and they
are in the interior of H. So we get, e.g.,

G
a 4
[4)
(55) [
4}
G
C
C2c4 ’

Consider now any disk D, together with all C; passing D, :

(56) @

Each time a curve C; passes D,, we introduce a small line segment crossing
Ci in D,, :

: @

We do this for each vertex v of G. This gives us a set % of pairwise disjoint line
segments. Let U be the set of end points of line segments in £. So |U| = 2|¥].
We call u,u’ € U mates if they are the two end points of one line segment in #.
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Next introduce a variable x, for each u € U. The value of this variable Xu

will stand for the distance over which we will shift the corresponding curve C; to
obtain a path P; in G as required.

We give four classes of linear inequalities in the x,(u € U). First:
(58) Xy +xy=0 if u and «' are mates.
Second consider u,u’ € U so that u is end point of a line segment crossing

C: and v is end point of a line segment crossing C ; with j # i, so that  and v/
belong to the same component of:

(59) R\(I; U...UL,UG[0,1]U...U G0, 1]).

Let for any curve D in R? :

(60) ¢(D) := the number of faces F' of H passed by D
(counting multiplicities).

Define:

(61)  Buw :=min {@(D) |D is homotopic in R?\(I; U... Ulp) to some
curve in (59) connecting u and u'}.

Now we require:
(62) Xy + Xy < ﬁu,u’ -1

It means that if curve C; is shifted at u over a distance x, (in the direction of u),
then curve C; should be shifted over a distance of at least x, + 1 — B, in the
negative direction. In particular, (62) gives that if u and ' belong to the same
disk D, as in:

(63)

then x, + x,y < —1.

Third, consider u, ' € U so that u is end point of a line segment in £ crossing
C;, and « is end point of a line segment in & also crossing C;. Moreover, let
there exist a curve D satisfying:
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(64) (i) D is a curve in (59) connecting u and /,

(i) D is not homotopic to any curve in C;[0,1] U U 4
teg
connecting u and .

Now let

(65) Buw = min{@(D) | D is homotopic to some
curve D satisfying (64)}.

We require:

(66) Xy + Xy < Buw — 1.

This includes the case u = u/, where (64) (ii) means that D is homotopically
nontrivial, and where (66) becomes 2x, < f,, — 1.
Finally, for any u € U let
(67) B. := min{p(D) |D is homotopic in R?\([; U...U I,) to some
curve in (59) connecting u and bd(I; U...UI,)}.

We require:
(68) Xy < Pu.

It means that we should not shift curve C; over one of the “holes” Ii,.... I,

By Ax < b we denote the system of linear inequalities made up by (58), (62),
(66) and (68). It can be shown that the right hand sides in these inequalities can
be calculated in polynomial time.

IIL. Solving the System Ax < b in Integers

In general, solving a system of linear inequalities in integers is NP-complete.
However, our matrix A4 is of a special type. It satisfies:

(69) Dlayl<2  for i=1,...,m,
j=1

where 4 = (a;;) has order m x n, say. In that case, Ax < b can be solved in
integers, e.g., with the “Fourier-Motzkin elimination method” (cf. [39]).

This method eliminates variables one by one. Order the inequalities in Ax < b
as:

(70 2x; <9
—2x1 <y
X +axX <6

X1+ awX < O
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=X1 + A 1X < S

—X1 + amnx' < Opr

A 1 x' < 6m”+1

apx' < 6,

where ay,...,an are row vectors of dimension n — 1, where x’' = (x2,-. ., x)7,
taking possibly y; = o0 or y; = 0.

Now i.f 71 +y2 < 0 then (70) clearly has no solution. If 1 +792 =0 and
71 = —72 is 0dd, then (70) has no integer solution. So we may assume:

(71) f—%yﬂ < L%mL

We can put (70) in another form:

1 1
(72) _‘572 =x < 5')’1,
aix’ —6;<x1<é—ax i= Lo.,m;j=m+1,...m";
ax’ < §; i=m'+1,...,m.
Eliminating x; gives:
(73) (ai+aj)x' <6;+; i=lL....mj=m+1,...m";

1
aix'szyz-f-éi i=1,...,m;

1
ajx's§y1+5j j=m+1,....m";
a;x' < §; i=m'+1,...,m

If (70) has an integer solution, also (73) must have an integer solution. System
(73) is again of the same type as the original system; i.e., the corresponding matrix
satiesfies (69) again. So we can solve (73) recursively. Let X’ be an integral solution
to (73). Hence, using (71), we have:

(74) fmaX{%yz, 12X lax' =81 < Lmin{%vl, min (& —aix')}].
This implies that we can find an integer x, satisfying (72). Thus we have found
an integer solution to (70).

The polynomial running time bound of this method follows from the fact that
the system (73) can be reduced to a system with O(n?) inequalities: for any set
of inequalities with equal left hand side, we consider only that one with lowest
right hand side.
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IV. Shifting the Curves

We call the integers x, found by solving Ax < b the shift numbers. They determine
the distance and direction of shifting of the curves C;. We carry out this shifting
in small steps. Roughly it works as follows.

If all x, are equal to 0, then no two distinct curves C; pass the same disk D,.
Indeed, if two different curves C; and C; would pass disk D,, then there are two
different curves C; and C; passing D, in such a way that they are incident to the
same component of

(75) D\(Gi[0, 1] U...U G0, 1]),

like in:

Let u and ' be as indicated. By (62), x,+x, < —1, contradicting x, = x,y = 0.

Moreover, if one curve C; passes a disk D, more than once, we can similarly
derive from (66) that the “loop” in between of the two passes of C; through D, is
homotopic to some curve in D,. So we can shortcut C;. Repeating this, we obtain
Ci,...,Ck so that each D, is passed at most once in total. Shrinking H to G the
curves Cy,...,Cy transform to pairwise disjoint simple paths in G as required.

If not all x, are 0, select one with x, = M > 0 as large as possible. Let u
belong to component K of

(77) DN(C1[0, 11 U... U C[0, 1]).
Suppose there is another point ' € U in K :

G

(78)
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If j # i, then by (62), x + x, < —1, and hence x, = Xy =X, +1=M+1,
contradicting the maximality of x,. If j = i, then the loop in between of two
passes of C; through D, is homotopic to some curve in D,, so we can shortcut C.

So we may assume that no such « exists. It means that K is “on the border”

of D,. Consider a longest subcurve of C; so that a consecutive series of line
segments has end point u with x, = M :

T T T Ust1

79 |
I T

with xu, < M, Xy, =Xy, =... =X, = X, = M and x,,, < M. (Such a longest

path exists, as at the beginning and end of C; we have x, = 0 (by (58) and (68)).)
Consider a neighbourhood of H at the same side of C; as uy,...,u;, :

A

(80) R @ ki K
K
uo\ }"1 }“2 }“3 }"4 G
/ A m\ N 7 /_/—

By (68), none of the faces Fi,...,Fs (in this example) belongs to Iy,...,I,. So
we can shift C; as:

ﬁ%@ ]

W)

L

—_—

/7




354 A. Schrijver

We introduce new line segments £,..., 7, crossing the new part of C; in the
corresponding disks. Let u},..., u, be the end points at the lower side in (81). So
we replace uj,...,us and their mates by uj,...,u},u],...,uy. The same we do for
the variables. The new variables we set:

(82) x,/l = xufz =

Xufp 1= Xy == Xy = —M+1,

=Xy =M—1,
s

leaving the remaining variables invariant. It is not difficult to see that (generally)
we obtain in this way an integral solution for the system of linear inequalities
corresponding to the modified system.

Repeating this “local” shifting, we obtain after a polynomial number of steps
a system with all x, equal to O, in which case the C; give paths in G as required.

On the Correctness of the Method

The correctness of the method follows from the following fact:
(83) problem (49) has a solution <> system A <b has an integral solution.

The implication < is proved by showing the correctness of the above shifting
process. The implication = is proved by deriving shift numbers x, from any
solution of (49).

The implication = can also derived in the following way. Let 4 = (a;;) be
any integral m x n-matrix satisfying

(84) Z]aijl <2 foreach i=1,...,m.
j=1

Let b be an integral column vector of dimension m. In characterizing the solv-
ability of Ax < b in integers, consider first the case that each row of A4 contains
one +1 and one —1. Then A4 is the incidence matrix of some directed graph. We
can consider b as a length function on the edges of this directed graph. Then a
solution x of Ax < b is called a potential. It satisfies:

(85) Xy — Xy < by, for any edge ovw.

As is well-known, such an integral potential exists if and only if each directed
cycle has nonnegative length.

The general case can be studied in terms of bidirected graphs. We can in fact
identify the matrix A with a bidirected graph. The vertices are identified with the
columns (or column indices) of A4, and the edges with the rows (or row indices)
of A. An edge connects v and w if a,, % 0 and a,, # 0. So we have ++ edges,
+— edges, and — edges, indicated as

86) ot 1 S, o o
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A row with a +2 can be seen as a loop. There are two types: ++ loops and
— loops, indicated as:

(87)

We call a row with only one +1 an end, at the corresponding vertex v. They can
be indicated as:

(38)

Call a sequence
(89) (vo, €1, 1, .., €4,0a)
a bidirected cycle if:

(90) (i) vo=vy;
(i) e is an edge or loop connecting vi—; and v; (i=1,...,d);
(il)) Gew, " Gepyp, <0 (for i=1,...,d —1), and a4 - Aoy, <0

(the vertices vy, ...,v; need not all be distinct). An example is:

_+ -+ 4 - -~

- o & -+

o1

A first necessary condition for the existence of a solution of Ax < b is:
92 each bidirected cycle has nonnegative length
(where the length of cycle (89) is Z§=x be,). This follows from:
d d d

(93) ZbEj 2 Z(aejuj—-l xvj_l + aejvjxvj) = Z(anl)j + aej+1vj)xvj = O

j=1 j=1 j=1
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(taking ez = e;, and assuming for simplicity that no e; is a loop - the general
case is left as an exercise).
Call a sequence

(94) (e1,01,€2,02, ..., 0d—2, €4—1,Vi~1,€d)
a link if

(95) () e; isanend at v; and e isanend at vy_y;
(i) e is an edge or loop connecting vi—; and vi(i=2,...,d —1);
(il) Gep; * Aepyy <0 (for i=1,...,d —1).

As a second necessary condition for the existence of a solution of Ax < b we
have:

(96) each link has nonnegative length.

It can be shown that (92) and (96) together are sufficient for the existence of
a rational solution of Ax < b. However, for an integral solution we need one
further condition. Call a cycle (89) doubly-odd if there exists a t with 0 <t < d
so that:

67 (0) vo=uv =uv4;

() Qepy " Gew, >0 and @,y ° Geyn, > 0;

t d
(i) ) b, isoddand ) b, is odd.

j=1 J=ttl

An example of a cycle satisfying (i) and (ii) is:

(98)

Now a necessary condition for the existence of an integral solution of Ax < b
is:

(99) each doubly-odd cycle has positive length.

This follows from (assuming again for simplicity that no e; is a loop):
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t t
(100) zbq 2 Z(aejv,-_lxvj_l + aejvjxuj) =
j=1 j=1
t—1
= Qeypy Uy, Z(aejvj + ae,-ij)xvj + Ao, Xy, = 2%y,
j=1

Since the left hand side is odd, we should have strict inequality if x is integral.
Hence we have strict inequality in (93).

Now conditions (92), (96) and (99) are sufficient for the existence of an integral
solution of Ax < b :

Theorem 32. Let A be an integral matrix satisfying (84), and let b be an integral
column vector. Then Ax < b has an integral solution x, if and only if:

(101) (i) each bidirected cycle has nonnegative length;
(i) each link has nonnegative length;
(iii) each doubly-odd cycle has positive length.

It is not difficult to derive a proof of this theorem with the help of the Fourier-
Motzkin elimination method described above.
From Theorem 32 one can derive the following theorem [42,43]:

Theorem 33. Problem (49) has a solution if and only if:

(102) (i) there exist pairwise disjoint simple curves C,...,C; in
R*\(I; U...U1,) so that C; ~ G; (for i = 1,...,k);
(ii) for each curve D : [0,1] — R*:\(J;U...U I,) with end points on
bd (I;U...UI,) one has:

k
cr (G,D) = Y mincr (C;, D);

i=1
(iii) for each doubly-odd closed curve
D:S —R\(IU...UL)

not passing obligatory points one has:

k
cr (G,D) > Z mincr (C;, D).

i=1
Here we use the following notation and terminology. We denote:

(103) cr (G,D) :=|{x €[0,1] | D(x) € G},
cr (C,D) = [{(x,y) € [0,1] x [0,1] | C(x) = DW)}| ;
mincr (C,D) = min {cr(C,D) | C ~ C,D ~ D}.

So cr (C,D) counts the number of intersections of C and D, which can be of
several types:
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C D C C C D C D
D C D D D C
(crossing) (touching)

By S, we denote the unit circle in the complex plane €. A closed curve
D : S; — R? is called doubly-odd if it is the concatenation of two closed curves
Dy, D, : S; — R?, with Dy(1) = D,(1) ¢ G, so that

k
(105) er (G,Dy) + Y_kr (C,Dy) is odd, and
i=1
k
cr (G, D) + Y kr (C;, Dy) is odd.

i=1

Here kr (C, D) denotes the number of crossings of C and D (cf. (104)).

An obligatory point is a point p € R\ (I, U.. .Ul,) so that, forsome i = 1,...,k,
each C; homotopic to C; passes p.

Two closed curves D,D' : S — R*\(I; U... U I,) are called homotopic
(or freely homotopic) denoted by D ~ D', if there exists a continuous function
@ :8; x [0,1] — R*\(I; U...U,) so that

(106) #(z,0) = D(z) and P(z,1) = D'(2)
for all z € S (so no base point is fixed). Again we denote:

(107) ¢r (G,D) == |{z € S, | D(z) € G},
cr (C,D) = {(y,2) € [0,1] x 8 | C(y) = D(2)}],
mincr (C, D) := min {cr (C,D)| C ~ C,D ~ D}.

Theorem 33 extends a theorem of Cole and Siegel [4] for grid graphs, and
a theorem of Robertson and Seymour [33] for the case p = 2 (i.e., one proper
hole). In these two cases we can delete condition (102) (iii).

To sketch the proof of Theorem 33, we note first that it is not difficult to see
that the conditions (102) are necessary. To see sufficiency, observe that we may
assume that Cj,..., C, in (102) (i) are in fact equal to Cy,..., Cy, respectively, and
that they are in the “blown up” graph H as above. Construct the system Ax < b
from this. Now each inequality

(108) Xy + Xy < Puy—1

(62) and (66) comes from a curve D in R?\([; U...U I,) connecting u and '
th ¢(D) = f,,. Similarly, the inequalities

09) Xy < P
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in (68) come from a curve D in R?\(I; U...UI,) connecting u and the boundary
of some face Ii,..., I, with (D) = §,. The inequalities

(110) Xu+ Xy =0

in (58) corFespond to a line segment in % with end points u and . This implies
that each link (94) in A corresponds to a curve D in R2\(I; U... U Ip) connecting
two points on bd(I; U...UI,). Note that

(111) the number of inequalities in link (94) corresponding to a line segment in
& is equal to $(d ~1).

Moreover, the length of the link is:

d
(112) be, = ¢(D) — %(d —1).
=1

J

It is not difficult to show further:

k
(113) %(d —1) =Y mincr (C;, D).

i=1

Hence condition (102) (ii) implies condition (101) (ii). It is also not difficult to
see that condition (102) (ii) implies

k
(114) cr (G,D) 2 Y mincr (C; D)

i=1

for each closed curve D in R}\(I; U...U I,) : take any curve E : [0,1] —
R7\(U...U I,) with E(0) € bd(I; U...UI,) and E(1) = D(1). Then the curve

(115) E-D'-E”!
(for t € N) satisfies:
(116) cr (GE-D'-E™Y)=2-cr (G,E)+t-cr (G,D)

(assuming without loss of generality that D(1) € G). One can show that there
exists a number S so that foreacht>0andeachi=1,...,k:

(117) mincr (C, E - D' - E™') > t - mincr (C;, D) — S.

By (102) (ii) (applied to curve (115)) and (116), for each t > 0 :

k
(118) t-cr (G,D)=t- Y mincr (Ci, D) — kS —2¢r(G, E).

i=1
Hence (114) follows. In a similar way as above one can derive from (114) that
(101) (i) holds. Moreover, condition (102) (iii) can be seen to imply condition
(101) (iii).
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Fixed Number of Holes
The following can be derived from Theorem 31:

Theorem 34. For each fixed p there exists a polynomial-time algorithm for problem
(3), whenever G is planar so that ry,sy,...,Tk, Sk can be covered by the boundaries
of at most p faces.

The idea of the proof is as follows. Let ry,si,...,r, Sk be covered by the
boundaries of faces Ij,...,I, (including the unbounded face, without loss of
generality). Consider Iy,...,I, as holes. Now we can enumerate all “possibly
feasible” homotopy classes of curves Cy,...,Cx (where C; connects r; and s;(i =
1,...,k)) in polynomial time.

Indeed, we only have to consider those curves which are pairwise disjoint and
simple. Moreover, we can find curves Dy,..., D,_, each connecting the boundaries
of two of the faces Ii,...,I,, so that they form a “spanning tree” on Iy,...,I,.
E.g,

(119)

Note that the space obtained by deleting all holes Iy,..., I, and the images of
all curves Dy,...,D,_; is simply connected.

We can take Dy,...,Dp_; so that cr (G,Dj) < |V|forall j=1,...,p—1. Then
we only have to consider those choices for the curves Cy,..., C for which

k
(120) D mincr (C, D)) <|V| for j=1,..,p—1,

i=1

since other choices obviously are infeasible. It can be shown that there are at

most |V| such choices (up to homotopy). Hence we can restrict the enumeration
to a polynomial number of choices.
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Theorem 34 extends Robertson and Seymour’s theorem (Theorem 1) for the
case that G is planar: if k is fixed, we can cover ry,sy, ..., 5 by a fixed number
of faces, namely at most 2k.

Surfaces

The following theorem from [45] can be proved in a way similar to the proof of
Theorem 33 above.

Theorem 35. Let G = (V,E) be a graph, embedded on a compact surface S, and
let Cy,...,Cy be closed curves on S, each not null-homotopic. Then there exist
pairwise disjoint simple closed curves Cy,...,Cy in G so that C; is homotopic to C;
Jor i=1,...,k, if and only if:

(121) (i) there exist pairwise disjoint simple closed curves Ci,...,Cx on
S so that C; is homotopic to C; for i = 1,..., k;
(ii) for each closed curve D : §; — S :
k
cr (G,D) > Y mincr (C;,D);
i=1
(iii) for each doubly-odd closed curve D =D, -D; : §; — §
with D1(1) = D,(1) ¢ G :

k
cr (G,D) > Zmincr (Ci, D).
i=1
Here we use similar terminology as above. Thus a closed curve (on S) is a
continuous function C : S; — §, where S; denotes the unit circle in the complex
plane €. It is simple if it is one-to-one. Two closed curves are disjoint if their
images are disjoint.
Two closed curves C and C are (freely) homotopic (on S), in notation C ~ C,
if there exists a continuous function @ : §; x [0,1] — § so that &(z,0) = C(z)
and &(z,1) = C(z) for all z € §;.
Again, we call a closed curve D : §; —> S doubly-odd (with respect to
G,C,,...,Cy) if D = Dy - D, for some closed curves Dy, D satisfying:

k
(122) cr (G,D1) # Y cr (Ci,Dy)  (mod 2),

i=1

k
er (G,Dy) # Y cr (C,Dy)  (mod 2).

i=1
It is easy to see that the conditions (121) are necessary conditions. The essence
of the theorem is sufficiency of (121).

Homotopic Trees

We can extend the polynomial-time algorithm for problem (49) to the following
problem:
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(123) Given: — a planar graph G embedded in R?;
— faces Iy,...,I, of G (including the unbounded face);
— pairwise disjoint sets Wi,..., W, of vertices of G
on the boundary of I; U...UI,;
— trees Ti,..., Ty embedded in ]RZ\(I,U...UI,,),
so that W; = V(Ti) for i=1,...,k;
find: — pairwise disjoint subtrees Ti,...,Tx of G so that
foreach i=1,...,k : T; is homotopic to T; in
R*\(I; U...UI,) fixing W.

Here two trees T and T embedded in R*\([; U...U I,) are called homotopic
(in notation: T ~ T) in R®\(I,; U...U L,) fixing W if:

(124) () W is a subset both of V(T) and of V(T) :
(ii) for every pair of elements w,w’ € W, the unique simple curve in T
connecting w and w’ is homotopic to the unique simple curve in T

connecting w and w’ (in R:\(I; U...U I,)).

In [44] we showed:

Theorem 36. There exists a polynomial-time algorithm for problem (123).

The idea of the algorithm is as follows. Again we blow up the graph G slightly,
as in (54), to obtain H. We replace each tree T; by t; := |W;| paths, following the
contours of T;. E.g,

(125) becomes

(assuming the end nodes are the elements of W;). So T; gives t; paths Cjy,...,Cy,
so that the concatenation

(126) Ki=C-C-...-Cy

is a simple closed curve, containing no face Iy,..., I, in its interior. Let L; denote
this interior. Assuming the original T7,..., Ty to be pairwise disjoint, the closed
curves Kj,..., K are pairwise disjoint. We may assume that they are part of H.

Again we introduce line segments each time a curve K; passes any disk D,
(cf. (57)). Let £ be the set of these line segments, and let U be the set of end
points of line segments in .%.
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Now if u and ' are end points of one line segment in %, crossing C;j say,
then one of the end points is in L; and the other not. Call the first one the inner
end point, and the other one the outer end point. Let U’ be the set of inner end
points, and let U” be the set of outer end points.

Again we have x, + x,y = 0 for each two mates u,«'. Similarly, we have
inequalities as in (62), (66) and (68) if u and ' are outer end points.

Moreover, we have for each pair of inner end points u,u' belonging to one
and the same L; :

(127) Xy + Xy < Puy

where

(128) Buw :=min {p(D) |D is a curve in R)\([;U...UI,)
connecting u and u, homotopic to
some curve in L;}.

Again, this gives us a system Ax < b of linear inequalities satisfying (69). Hence
we can solve it in integers in polynomial time. The integer values are called the
shift numbers. We shift each C;; according to these shift numbers. After this shift
we obtain curves C,fj(i = 1,...,k;j = 1,...,t;) so that for each i = 1,...,k the
closed curve

(129) K =CC..-C,

does not enclose any I4,...,I,, and so that no two different K/ share the same
disk D,. Each K] gives in G a cycle K|’ so that two different K|’ are vertex-disjoint.
Taking an arbitrary tree T/ in K/’ spanning W; gives a solution of problem (123).

Fixed Number of Holes

We can derive an extension of Theorem 34. Consider the problem:

(130) Given: — a graph G = (V,E),
— sets Wi,..., Wy of vertices of G,
find: — pairwise vertex-disjoint trees Ti,...,Tx in G
so that the vertex set of T; contains
Wi (fOl’ i= 1,,k)

This problem clearly is NP-complete, as the case |Wi| = ... = |[Wy| = 2 is
just the disjoint paths problem. Problem (130) is important to solve in VLSI-
layout - it means that we must connect several sets of pins by pairwise disjoint
interconnections.

Now the following can be derived from Theorem 36:

Theorem 37. For each fixed p, there exists a polynomial-time algorithm for problem
(130) if G is planar and W1 U...U W, can be covered by the boundaries of at most

p faces of G.
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The idea is again to enumerate all “possibly feasible” choices of homotopies of
trees T1,..., Ty covering Wy,..., W, respectively, similar to that used in deriving
Theorem 34 from Theorem 31.

6. Edge-Disjoint Homotopic Paths

We finally consider the problem:

(131) Given: - a planar graph G = (V, E) embedded in R?,
— faces Iy,...,1I, of G (including the unbounded face),
—curves Cy,...,C with end points on bd (I; U... U I}),
find: - pairwise edge-disjoint paths Py,..., P, where P; is
— homotopic to C; in R*\(I, U...U1,) (i=1,...,k).

(Here “pairwise edge-disjoint” is assumed to include that no path uses the same
edge twice) This problem is NP-complete, as was shown by Kaufmann and
Maley [17]. A main difference with the vertex-disjoint case is that for the edge-
disjont case the given curves Cj, ..., C; might necessarily cross, so that the natural
ordering of the curves in the vertex-disjoint case does not occur.

Clearly, a necessary condition for the solvability of (131) is:

(132) (Cut condition) for each curve D in R*\([; U... U I,) with end points on
bd (I;U...UI,) and not intersecting V' one has:

k
er (G,D) > ) mincr (Ci, D).
i=1

This condition is not sufficient, as is shown by a very simple example:

a Q

(133)

So this gives no hope for obtaining interesting special cases where the cut
condition is sufficient. However, under a parity condition, the problem turns out
better to handle:

(134) (Local parity condition) for each v € V:

deg (v)+|{i € {1,...,k}| C; begins at v} |+|{i € {1,...,k} | C; ends at v}|
is even.
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More general is the following condition:

(135) (Global parity condition) for each curve D in R?\(I; U ... U I,), with end
points on bd(I; U...U I,), not intersecting ¥ and not touching edges, one
has:

k
cr (G,D) = ) mincr (C;,D) (mod 2).
i=1
It is not difficult to derive (134) from (135). Kaufmann and Maley [17]
showed that even under the local parity condition (134), problem (131) is
NP-complete. It is not known whether this is also the case under the global
parity condition (135). It turns out that the cut condition and one of the
parity conditions are sufficient in some special cases.

Theorem 38. If p < 2 and the local parity condition is satisfied, then problem (131)
has a solution if and only if the cut condition (132) is satisfied.

For p = 1 this is just the Okamura-Seymour theorem (Theorem 18). For p = 2,
this is shown by Van Hoesel and Schrijver [10]. They also gave a polynomial-time
method.

Theorem 39. If

(136) (i) G is part of the rectangular grid,
(ii) each face of G of area larger than 1 belongs to Iy,...,Ip,
(iii) each vertex of degree 4 incident to exactly one face in Iy,...,I, is not
an end point of any of the curves Cy,...,Cy,
(iv) the global parity condition holds,

then: problem (131) has a solution, if and only if the cut condition (132) holds.

This was shown by Kaufmann and Melhorn [18], who also gave a polynomial-
time algorithm for the corresponding problem. For an extension to “straight-line”
planar graphs, see [41].

Example (136) shows that we cannot extend Theorem 38 to the case p = 3
(even if we assume the global parity condition):

a Q

(137) \\\\\\\ x\\\\\\

Example (138) shows that in Theorem 39 it is not sufficient to assume just
the local parity condition instead of the global parity condition:
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In fact, Kaufmann and Maley [17] showed that problem (131) is NP-complete
if (136) holds with (iv) replaced by the local parity condition.

Although no solution exists in (137) and (138), there exists a “fractional”
solution: we can find paths P| ~ C,P{ ~ C,P; ~ C;, Py ~ C; and scalars
X =1{ =2 =1 =1 so that for each edge e:

(139) Xx"ie) + A" (e) + Aoxite) + A5y (e) < 1.

It turns out that, for any number of holes, the existence of such a fractional
solution is equivalent to the cut condition, as was shown in [40]:

Theorem 40. Let G = (V,E) be a planar graph embedded in R2. Let Ii,.... 1,
be some of the faces of G, including the unbounded face. Let Py,...,Px be paths
in G with end points on the boundary of Iy U... U I,. Then there exist paths
Pi,.... Py, Py, Poyy o Pray ..o Pry, in G and rationals Ay, ..., Ay, A, ...,
Adtyseees Aiclyenvs Ay, = 0 50 that:

(140) () Pj~P in R\(;U...UL) (i=1,.,k;j=1,..,1),

(i) > Ay=1 (i=1,...,k),
j=1
k

@) D) Ayxfie) <1 (e € E),
i=1 j=1

if and only if the cut condition (132) is satisfied.

Note that the 1;; being integer would give a solution of (131).
Since the 4;; can be found in polynomial time, with the help of the ellipsoid
method (cf. [9]), we have as a consequence:

Theorem 41. The cut condition (132) can be tested in polynomial time.

We finally sketch the proof of Theorem 40. It is convenient to transform the
space R\ (I; U...U I,) into a compact orientable surface S : for each curve C,
connecting I; and I say, we add a “handle” between I j and Iy and make C; into
a closed curve C| over this handle. Moreover, we extend the graph with an edge
over the handle connecting the two end points of C;. We do this for each C;. In
this way we obtain a compact orientable surface S. Then Theorem 40 follows
from the following “homotopic circulation theorem”:
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Theorem 42. Let G = (V,E) be a graph embedded on a compact orientable surface
S. Let Cy,...,Ck be closed curves on S. Then there exist cycles Bii,...,Bisys...s
Bii,---s B, in G and rationals Allse ooy Aigse ey Akts vy Ay, 2 0 s0 that:

(141) 0 Y= (i=1,....R),
j=1

k 4
CEDIOWILICES (e € E),

i=1 j=1
if and only if for each closed curve D on S not intersecting V we have:

k
(142) cr (G,D) = Y mincr (C;, D).

i=1

A cycle in G is a sequence
(143) (vo, €1, 01, €2,0, ..., €/, 07),

where vg,..., v, are vertices, with vp = v,, and where e; is an edge connecting v;_;
and vi(i = 1,...,7). We identify in the obvious way such a cycle with a closed
curve on S.

In fact, if S is the torus, we can take the 1;; to be integers - see [8].

Basic in proving Theorem 42 is the following:

Theorem 43. Let G be an eulerian graph embedded on a compact orientable surface
S. Then the edges of G can be decomposed into cycles Cy,...,C, in such a way that
for each closed curve D on S:

(144) mincr (G,D) = »_ mincr (C;, D).

i=1

Decomposing the edges into cycles C, . .., C, means that each edge occurs in exactly
one of the C;, while in each C; all edges are different. Moreover, mincr (G, D) :=
min {cr(G,D) | D,S; — S\V(G);D ~ D}.

Our proof for this theorem is quite long, and uses some classical theorems in
topology of Baer [2], Brouwer [3], von Kerékjarté [19] and Poincaré [32].

We do not know if Theorem 43 also holds for all compact nonorientable
surfaces. In fact, it holds for the projective plane, in which case it is equivalent
to Lins’ theorem (Theorem 27 above).

In order to derive Theorem 42 from Theorem 43, we first derive the following
from Theorem 43, using the duality of graphs on surface:

Theorem 44. Let G = (V,E) be a bipartite graph embedded on a compact ori-
entable surface S, and let Cy,...,Cy be cycles in G. Then there exist closed curves
Dy,...,D, : S —> § so that (i) no Dj intersects V, (ii) each edge of G is inter-
sected by exactly one Dj and by that D; only once, (iii) for each i=1,...,k :
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t
(145) minlengthg (C;) = Zmincr (Ci, D)).
j=1

Here we denote for any cycle C in G :

(146) lengthg (C) :=¢, if C = (vo,e1,01,...,es ),
minlengthg (C) := min {lengthg(C) |C~C,C cyclein G}.

(Cycles C and C are allowed to pass one edge several times.)

Proof. We can extend (the embedded) G to a bipartite graph L embedded on S,
containing G as a subgraph, so that each face of L (ie., component of S\L) is
simply connected (i.e., homeomorphic to R?). Let

:= max {minlengthg (C}) | i = 1,...,k}. By inserting d new vertices on each
edge of L not occuring in G, we obtain a bipartite graph H satisfying

(147) minlengthg (C;) = minlengthy (C))

fori=1,...,k

Consider a dual graph H* of H on S. Since H is bipartite, H* is eulerian.
Hence by Theorem 43 the edges of H* can be decomposed into cycles Dy,...,D;
so that for any closed curve C on S :

t
(148) mincr (H',C) = Y_ mincr (D}, C).
j=1

Now for each i = 1,...,k,mincr(H",C;) = minlengthy(C;) = minlengths (C;),
and (145) follows. O

Using the polarity relation of convex cones in eulerian space we derive finally
Theorem 42 from Theorem 44. Necessity of (142) being trivial, we only show
sufficiency.

Suppose (142) is satisfied for each closed curve D not intersecting V. Let K
be the convex cone in R* x R? generated by the vectors:

(149) (€ :x") (=1,.,kI cydein G with T ~ Cy);
0se.) (e € E).

Here ¢; denotes the i-th unit bases vector in R Similarly, €, denotes the e-th
unit basis vector in RE. 0 denotes the origin in R¥.

Although (149) gives infinitely many vectors, K is finitely generated. This can
be seen as follows. For each fixed i, call a cycle I' ~ C; minimal if there is no
cycle I'" ~ C; with ¥"'(e) < y' (e) for each edge e, and with strict inequality for
at least one edge e. So the set {y | I' minimal cycle with I' ~ C;} forms an
antichain in Zf and is therefore finite. Since we can restrict, for each i = 1,...,k
the " in (149) to those with I' minimal, K is finitely generated.

What we must show is that the vector (131) = (1,...,1;1,...,1) belongs to K.

)
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By Farkas’ lemma, it suffices to show that for each vector (p,b) € Qk X QE
with nonnegative inner product with each of the vectors (149), also the inner
product with (1;1) is nonnegative. So let (p;b) have nonnegative inner product
with each of (149). This is equivalent to:

(150) () pi+ Y ,cxb@x (€0 20 (i=1,...,k;I cyclein G with ' ~ C));
(ii) b(e) = 0 (e € E).

Without loss of generality, each entry in (p;b) is an even integer. Let G’ be the
graph arising from G by replacing each edge e by a path of length b(e) (that is,
b(e) — 1 new vertices are inserted on e, if b(e) > 1;e is contracted if b(e) = 0).
Each cycle C; in G directly gives a cycle C] in G’. Then by (150) (i):

(151) —pi < minlengthg(C]) for i=1,... k.

Since G’ is bipartite, by Theorem 44, there exist closed curves Dy,...,D, on S so
that (i) each D; intersects G’ only in edges of G/, (i) each edge of G’ is intersected
by exactly one D; and only once by that D; and (iii) for each i = 1,...,k :

t
(152) minlengthg (C{) = >_ mincr (C],D;).
j=1

Note that (ii) is equivalent to:
t
(153) ble) = > 1™ (e)
j=1
for each edge e of G. Therefore, using (142), (151), (152) and (153):

(154) D@ =2 5= cr (GD) =

ecE Jj=1 e€E Jj=1

t  k kot
Z Zmincr (Ci,Dj) = Z Zmincr (Ci,Dj) =
j=1i=1 i=1 j=1

k k
Z minlengthg (C}) > — Z Di-

i=] i=1

So (p;b)- ;1) T > 0. m|
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